Knowledge Discovery from Biomedical Ontologies in Cross Domains

نویسندگان

  • Feichen Shen
  • Yugyung Lee
چکیده

In recent years, there is an increasing demand for sharing and integration of medical data in biomedical research. In order to improve a health care system, it is required to support the integration of data by facilitating semantic interoperability systems and practices. Semantic interoperability is difficult to achieve in these systems as the conceptual models underlying datasets are not fully exploited. In this paper, we propose a semantic framework, called Medical Knowledge Discovery and Data Mining (MedKDD), that aims to build a topic hierarchy and serve the semantic interoperability between different ontologies. For the purpose, we fully focus on the discovery of semantic patterns about the association of relations in the heterogeneous information network representing different types of objects and relationships in multiple biological ontologies and the creation of a topic hierarchy through the analysis of the discovered patterns. These patterns are used to cluster heterogeneous information networks into a set of smaller topic graphs in a hierarchical manner and then to conduct cross domain knowledge discovery from the multiple biological ontologies. Thus, patterns made a greater contribution in the knowledge discovery across multiple ontologies. We have demonstrated the cross domain knowledge discovery in the MedKDD framework using a case study with 9 primary biological ontologies from Bio2RDF and compared it with the cross domain query processing approach, namely SLAP. We have confirmed the effectiveness of the MedKDD framework in knowledge discovery from multiple medical ontologies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicate Oriented Pattern Analysis for Biomedical Knowledge Discovery

In the current biomedical data movement, numerous efforts have been made to convert and normalize a large number of traditional structured and unstructured data (e.g., EHRs, reports) to semi-structured data (e.g., RDF, OWL). With the increasing number of semi-structured data coming into the biomedical community, data integration and knowledge discovery from heterogeneous domains become importan...

متن کامل

MedTQ: Dynamic Topic Discovery and Query Generation for Medical Ontologies

Biomedical ontology refers to a shared conceptualization for a biomedical domain of interest that has vastly improved data management and data sharing through the open data movement. The rapid growth and availability of biomedical data make it impractical and computationally expensive to perform manual analysis and query processing with the large scale ontologies. The lack of ability in analyzi...

متن کامل

Interoperability between Biomedical Ontologies through Relation Expansion, Upper-Level Ontologies and Automatic Reasoning

Researchers design ontologies as a means to accurately annotate and integrate experimental data across heterogeneous and disparate data- and knowledge bases. Formal ontologies make the semantics of terms and relations explicit such that automated reasoning can be used to verify the consistency of knowledge. However, many biomedical ontologies do not sufficiently formalize the semantics of their...

متن کامل

Biomedical ontologies in action: role in knowledge management, data integration and decision support.

OBJECTIVES To provide typical examples of biomedical ontologies in action, emphasizing the role played by biomedical ontologies in knowledge management, data integration and decision support. METHODS Biomedical ontologies selected for their practical impact are examined from a functional perspective. Examples of applications are taken from operational systems and the biomedical literature, wi...

متن کامل

Information retrieval and knowledge discovery utilising a biomedical Semantic Web

Although various ontologies and knowledge sources have been developed in recent years to facilitate biomedical research, it is difficult to assimilate information from multiple knowledge sources. To enable researchers to easily gain understanding of a biomedical concept, a biomedical Semantic Web that seamlessly integrates knowledge from biomedical ontologies, publications and patents would be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016